Studies of Hadronic Jets with the Two-Particle Azimuthal Correlations Method

Paul Constantin

Hadronic Jets as investigation tool of soft QCD states

Jet event in a hot QCD medium

Bulk (soft) QCD particle production:

- low-Q², long range strong processes, well described by hydro-/thermo-dynamical models;
- ~90% of all final state particles are from vacuum!

Jet (hard) QCD particle production:

- from partonic hard scattering (primarily gluons);
- high-Q² processes with calculable cross section $(\alpha_S(Q^2) << 1)$ produced early $(\tau < 1 \text{fm})$;
- interact strongly with the bulk QGP: loose energy via gluon radiation ≡ jet quenching and broadening

Observed via:

- leading (high p_T) hadron spectra;
- two-particle azimuthal correlations.

Quenching and Broadening of Hadronic Jets in QGP

Energy loss through gluon radiation:

reduction of fast parton energy

(high p_T suppression) in many low energy

(low p_T enhancement)

and large angle gluons

(jet transverse momentum k_T broadening).

I.Vitev and M. Gyulassy, PRL 89 (2002)

Probe Calibration – Jets in pp and p(d)A collisions

 All hot nuclear (QGP) effects are established with respect to vacuum (pp collision) effects and cold nuclear (p(d)A collisions) effects:

$$R_{AA}(p_T) = \frac{d^2N^{AA}/dp_T d\eta}{T_{AA}d^2\sigma^{NN}/dp_T d\eta}$$

$$pp cross section!$$

$$\langle k_{\perp}^2 \rangle_{AA} = \langle k_{\perp}^2 \rangle_{vac} + \langle k_{\perp}^2 \rangle_{IS nucl} + \langle k_{\perp}^2 \rangle_{FS nucl}$$

$$p+p \longrightarrow p(d)+A \longrightarrow A+A$$

Cold nuclear effects are generated by initial state effects like the Cronin
effect and gluon saturation effects which <u>could produce similar effects</u> as the
final state effects (energy loss) in the hot nuclear matter.

Hadronic Jet Quenching at High p_T – R_{AA} measurements

- Strong suppression in central AuAu hadron spectra at high pT
- Cronin effect in dAu hadron spectra at high pT
- Jet suppression at high p_T is clearly a final state effect (gluon radiation)
- Jet enhancement at low p_T and jet broadening are to be studied via the two-particle angular correlation method

Two-Hadron Azimuthal Correlations in pp and pA collisions

- The basic distribution is 1/N_{trigg} ×dn_{trigg-assoc}/dΔφ
- It is described by a flat combinatorial background and two Gaussians: the <u>near-side</u> (around $\Delta \phi \sim 0$, with $\phi \equiv 0$ being the high p_T trigger) vacuum jet fragmentation, and the <u>away-side</u> (around $\Delta \phi \sim \pi$) vacuum (pp case) and Cronin (pA case) k_T jet broadening

two-hadron correlations triggered on a π^{\pm} with $p_{Ttrigg}>5GeV/c$ in dAu: Gaussian Shape

⟨k_T⟩ and conditional yields in pp and dAu collisions

- Away-side k_T broadening is similar for pp and dAu collisions
- Away-side conditional yield (number of associated hadrons per trigger pion) follows the typical vacuum fragmentation function

 $x_E = -\frac{\vec{p}_T \cdot \vec{p}_{Ttrigg}}{|\vec{p}_{Ttrigg}|^2}$

PH*ENIX

Two-Hadron Azimuthal Correlations in AuAu collisions

AuAu: a source of correlated background global collective flow:

$$N(1+2v_{2assoc}v_{2trigg}cos(2\Delta\varphi))$$

- Figure is background subtracted (only pairs from the di-jet source)
- Away-side is pronouncely nongaussian and broadened

ZYAM subtracted pairs per trigger: 1/N^A dN^{AB}(di-jet)/d($\Delta \varphi$)

PHENIX

Away-side broadening and enhancement in AuAu collisions

- Away-side conditional yield is enhanced (red, left panel) with centrality
- Away-side RMS broadens (red-points, right panel) with centrality
- This happens for low p_T (p_{Tassoc}~1.5GeV/c, p_{Ttrigg}~3GeV/c)

STAR – away-side suppression at high p_T in AuAu

Adler et al., PRL90 (2003), PRL 91 (2003)

 STAR experiment sees a strong suppression of the away-side at high p_T of the associated hadron

Current efforts in AuAu two-particle correlation analysis (I)

- A new AuAu data set with ~13 times more statistics is being analyzed now; this will allow significant improvements of the existing results:
 - higher statistical significance;
 - higher transverse momentum reach: where does the transition from suppression to enhancement happens?
- New types of two-particle correlations:
 - correlations of mid-rapidity trigger hadrons (π⁰) with high-rapidity associated hadrons (μ[±] from hadron decays in the muon arms) to establish the x-dependence of these effects → <u>initial state gluon saturation effects</u>;
 - Correlations of trigger dileptons (mid-rapidity e^+e^- and high-rapidity $\mu^+\mu^-$) with associated hadrons for detailed jet shape studies.
- Posibility to pursue this physics at the next heavy ion collider (the LHC at CERN) with the CMS detector.

Current efforts in AuAu two-particle correlation analysis (II)

- <u>Higher rapidity</u> means lower x, $x=p_T/\sqrt{s}\cdot(e^{+\eta}+e^{-\eta})$, and at low enough x gluon saturation effects become significant. Gluon fusion becomes the dominant elementary process and two-particle correlations should make the transition from a di-jet shape to a mono-jet shape.
- <u>Dilepton (virtual photon) tagged jets</u> have several advantages, the main ones being:
 - there is no correlated background (photons don't couple to flowing QGP);
 - the initial 4-momentum of the jet is directly measured by measuring the photon (dilepton pair);
 - however, this is a low cross section process

